
Job Shop Scheduling
using genetic algorithm

Jan Palášek

2019-11-02

Table of contents

Introduction 1

Problem Description 2

Graph 2

Genetic Algorithm 6
Representation . 6
Genetic Operators . 7

Selector . 7
Crossover . 7
Mutation . 7

Fixing the structure . 8
Fitness . 10
Reinsertion . 10
Elitism . 10
Summary . 10

Experiments 10

Credits 14

Introduction

Suppose we own a factory, we have a list of products. Each of this product consists of certain
number of components and each component can be made on a particular machine after a
certain time. We would like to run the factory as effectively as possible. We would like to

1

determine, in which order should be the components made on each machine in order to make
all of them as fast as possible. This problem is called job shop scheduling problem and falls
into NP-hard category, meaning that it cannot be efficiently solved in a polynomial time.

Goal of this article is to describe a simple solution of job shop scheduling using genetic algo-
rithm. Implementation is written in C# and available on GitHub.

Problem Description

We have n jobs that consist of at maximum o operations with real positive costs. The operations
of a job must be processed in the order in which they are defined in the job. We also have m
machines. Every operation is processed by exactly one machine. Every machine can perform
1 operation at the same time.

Our goal is to create an execution plan for every machine that specifies order of processing
operations so that the length of the overall schedule is minimal.

Example of problem definition

For this example we will use 2 jobs where each will have 3 operations. Furthermore, every
operation must be processed on one of 2 machines. In order to represent this example in a
more compact way, we will use triplets (operation ID, machine ID, operation cost).

• Job 0: (0, 0, 2), (1, 1, 5), (2, 0, 3)
• Job 1: (3, 1, 6), (4, 0, 1), (5, 0, 4)

Example of schedule

Here the 0-th machine will first process operation 0, then 4, 5 and lastly 2. 1-st machine will
process 1, 3.

• Machine 0: operations 0, 4, 5, 2
• Machine 1: operations 1, 3

Graph

We can represent this problem as a flow network. We create vertices source and target. Every
vertex (except for source and target) will represent an operation, every oriented edge will
represent an order of execution of the two operations. Oriented edge (u, v) can be seen as that
the operation v requires operation u to finish in order to start running. Job’s operations will
represent a path from the source to the target. Furthermore, every operation will be connected
to all operations on the same machine but different job using an unoriented edge.

2

https://github.com/JanPalasek/job-shop-scheduling

0

2 5 3

6 1 4

Figure 1: Example of problem definition from problem description section converted into a
graph. Yellow colour represents operations of machine 0, green colour represents
operations of machine 1. Numbers are costs of the operations (instead of cost of
operation you can also view it as a value of every edge directing from the operation
away). Dotted edges denote edges between operations on different jobs but same
machines.

We need to add orientations to all not oriented edges such way so the graph stays acyclic.
These newly added orientations will represent order of operations on every machine.

We can observe that if there’d been a cycle, the schedule would be invalid. None of the
operations in the cycle could be processed without processing the one before which when
trying to process the schedule, it would end up in an infinite loop.

We can also observe that this graph is in fact a dependency graph. Every operation (vertex)
has a list of requirements that need to be completed before the operation itself (edges directed
to the operation).

In order to define relation between the graph and length of the schedule, let’s take a look at
a different example.

• Job 0: (0, 0, 2), (1, 1, 4), (2, 0, 3)
• Job 1: (3, 0, 4), (4, 1, 5), (5, 1, 10)
• Job 1: (6, 1, 1), (7, 0, 1), (8, 0, 1)

Let’s have a schedule represented by following list of machine operations:

• Machine 0: operations 4, 7, 8, 0, 2
• Machine 1: operations 6, 1, 4, 5

3

https://en.wikipedia.org/wiki/Dependency_graph

0

2 5 3

6 1 4

Figure 2: Example of schedule from problem description section converted into a graph. Bold
edges are edges added according to the schedule.

0

2 4 3

1 1 1

4 5 10

Figure 3: Graph from the example defined above

4

0

2 4 3

1 1 1

4 5 10

Figure 4: Graph with added orientations to all unoriented edges according to schedule above.

As it was stated at the beginning of this chapter, every edge (u, v) (of operations u and v) can
be seen as that operation v needs u to finish in order be able to start (u is a requirement for v).
With this idea in mind, we can modify topologically sorted graph in the following fashion:

1. we will add edges between all non-directly connected operations (no edge connects them
directly) on the same machine,

2. we will remove all transitive edges between the same machine operations.

The result structure is our original transitively reduced dependency graph from the machines
point of view.

4 1 1 41 2 53 100

Figure 5: Dependency graph created from the original graph.

At last, completing the entire schedule needs all operations to be processed in the specified
order. We can look at this as going from source to target edge by edge while for each vertex
we process it only if it all its predecessors were already processed, otherwise we wait.

5

https://en.wikipedia.org/wiki/Transitive_reduction

4

1

1

4

1 2

5

3

10

0

Figure 6: Dependency graph reorganized from machines point of view.

We know that if we want to reach the target from the source, we have to wait until all its
predecessors are processed. More precisely, we need to compute maximum of all costs that
each of the target’s predecessor needed to be reached + its own cost. This can be generalized
for every vertex in the graph. Therefore, we created a recursive algorithm to compute the
length the schedule.

But we can compute it in non-recursively too. If we take the algorithm described above, in
every step it takes the predecessor with the largest cost. This is equivalent to choosing the
longest path of all possible paths to every vertex. So we can iterativelly compute the longest
path following the topological order from source up to the target.

Genetic Algorithm

Job shop scheduling problem is NP-hard. We will try to solve it using an optimization tech-
nique called genetic algorithm.

Representation

We will encode the schedule as a list of permutations. Every permutation will represent order
of operations performed on one particular machine. This representation is very compact and
allows us to use permutation operators which saves us time designing new ones.

Example of representation

Let’s use example from problem description section. We will represent the individual exactly
same way as we already described in example of schedule.

• Machine 0: operations 0, 4, 5, 2
• Machine 1: operations 1, 3

6

0

2 4 3

1 1 1

4 5 10

Figure 7: Graph with the longest path highlighted by a blue colour with its length 27.

Genetic Operators

Selector

We will use non-deterministic tournament selection of size 2. It takes 2 individuals and with
some high probability takes the one with higher fitness (otherwise it takes the second one).

Crossover

Crossover is performed only between list of operations of same machines. As a crossover we
will use cycle crossover (CX). I also tried partially mapped crossover (PMX) with slightly
worse results.

Mutation

As a mutation we will use inversion mutation. Every individual is mutated with a mutation
probability. For each machine we will perform the inversion on the list of its operations with
some small probability.

7

Figure 8: Inversion mutation

There is also implemented an adaptive version of this mutation. If the best element stays same
for a number of generations, the probability of mutation increases up to a certain level. This
mechanism is supposed to make the population more diverse in order to escape local optima.

Fixing the structure

After performing the genetic operators there can emerge cycles in the graph.

0

2 5 3

6 1 4

Figure 9: Individual from example of representation with 0-th machine order (0, 4, 5, 2) mu-
tated into order (4, 5, 0, 2) represented as graph. Red edges form a cycle.

In order to have a valid schedule we need to remove all cycles. We need to change direction of
the edges so the graph becomes acyclic. For this let’s divide edges into 3 categories: backward,
same-level and frontal.

• Backward edge is an edge that connects two operations with different jobs and goes from
operation with higher index in the machine’s list.

• Same-level edge connects two operations with different jobs with same indices in their
machine’s lists.

• Forward edge connects two operations with different jobs and goes from operation that
has lower index in its machine’s list.

We can observe that if we change direction of all backward (and potentially some same-level
edges), we will surely get rid of cycles in the graph. This algorithm always makes graph
valid, but the problem is that there could be an optimal solution containing a backward edge.

8

0

2 5 3

6 1 4

Figure 10: Blue-coloured edges are backward edges.

Therefore, we modify the algorithm and make it switch direction of backward edge in the cycle
with some high probability and direction of a non-backward edge with some low probability.

0

2 5 3

6 1 4

Figure 11: Graph with fixed edges. Green edges denote the ones whose orientation has been
reversed.

Furthermore, we need the fixed graph to be as close as possible to the original graph. Reversing
an edge during fixing performs a kind of unwanted mutation. In the algorithm we will first
try to detect cycle. If there is none, we will quit. Otherwise we break one edge of the cycle
and repeat. This way we will reverse as few edges as possible.

Cycle detection is handled by Tarjan’s strongly connected components algorithm in the imple-
mentation itself.

9

https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm

Fitness

Fitness of the individual is simply determined by the length of its schedule.

Reinsertion

If there are more individuals than the required population size n, we need to reduce the
population. The algorithm takes n best individuals from the offspring population and drops
the rest.

Elitism

We will use an elitism in order not to lose the best individual obtained so far. It copies
small percentage of individuals from previous generation to the current generation without
undergoing changes.

Summary

1. Encode the individual as a list of permutations,
2. perform selection,
3. perform crossover,
4. perform mutation,
5. fix the individual (remove cycles),
6. reinsertion and perform elitism.

Experiments

There have been performed multiple experiments in order to measure efficiency of this genetic
algorithm. We used some of datasets from https://github.com/google/or-tools, namely ft06,
ft10, ft20, la19, la35, la40. Size of these datasets is measured by number of jobs and number
of machines, denoted as m x n.

For evaluations we used following parameters:

• Population size - 100,
• Iterations - 10,
• Generations - 1500,
• Crossover probability - 75%,
• Mutation probability - 30%,
• Mutation per machine probability - 5%,

10

• Elitism - 2%.

We performed tests with parameters specified above once using adaptive mutation and once
not using it (we call it basic) for every dataset. If adaptive mutation was turned on, it had
lower mutation probability bound set up for 30% and upper for 50%. These parameters were
used for all datasets in order to simplify evaluation.

Table 1: Results of experiments using basic GA.

Dataset Best (optimum) Avg best Std deviation best
ft06 55 (55) 58.3 1.27
ft10 1083 (930) 1120 22.86
ft20 1477 (1165) 1537.3 38.44
la19 908 (842) 933.7 20.13
la26 1347 (1218) 1399.6 31.01
la35 2087 (1888) 2118.4 19.95
la40 1374 (1222) 1411.4 28.4

Table 2: Results of experiments using adaptive GA.

Dataset Best (optimum) Avg best Std deviation best
ft06 55 (55) 57 2
ft10 1063 (930) 1105.1 26.48
ft20 1448 (1165) 1504.4 35.13
la19 906 (842) 926.3 11.98
la26 1361 (1218) 1390.9 15.58
la35 2057 (1888) 2093.5 25.27
la40 1365 (1222) 1405.9 26.28

Graphs below show average of best individuals across all iterations for all generations of the
given dataset.

Adaptive genetic algorithm shows better performance than basic GA. Increasing mutation
probability allows it to faster escape local optima.

In some tasks the algorithm was still progressing even around 1500 generations. However, we
didn’t perform more tests due to lack of time and resources.

11

57

58

59

60

61

S
ch

e
d
u
le

 l
e
n
g
th

1 3 10 30 100 300 1000

Generation

ft06.in

Adaptive
Basic

Figure 12: Dataset ft06, size 6 x 6.

1150

1200

1250

1300

S
ch

e
d
u
le

 l
e
n
g
th

1 3 10 30 100 300 1000

Generation

ft10.in

Adaptive
Basic

Figure 13: Dataset ft10, size 10 x 10.

1550

1600

1650

1700

1750

S
ch

e
d
u
le

 l
e
n
g
th

1 3 10 30 100 300 1000

Generation

ft20.in

Adaptive
Basic

Figure 14: Dataset ft20, size 20 x 5.

12

950

1000

1050

1100

S
ch

e
d
u
le

 l
e
n
g
th

1 3 10 30 100 300 1000

Generation

la19.in

Adaptive
Basic

Figure 15: Dataset la19, size 10 x 10.

1400

1450

1500

1550

1600

1650

S
ch

e
d
u
le

 l
e
n
g
th

1 3 10 30 100 300 1000

Generation

la26.in

Adaptive
Basic

Figure 16: Dataset la26, size 20 x 10.

2100

2200

2300

2400

2500

S
ch

e
d
u
le

 l
e
n
g
th

1 3 10 30 100 300 1000

Generation

la35.in

Adaptive
Basic

Figure 17: Dataset la35, size 30 x 10.

1450

1500

1550

1600

1650

1700

1750

1800

S
ch

e
d
u
le

 l
e
n
g
th

1 3 10 30 100 300 1000

Generation

la40.in

Adaptive
Basic

Figure 18: Dataset la40, size 15 x 15.

13

Credits

This article is inspired by bachelor thesis authored by Martin Hanzal named “Geneticky algo-
ritmus jako metoda reseni rozvrhovaci ulohy”.

14

https://vskp.vse.cz/60417_geneticky_algoritmus_jako_metoda_reseni_rozvrhovaci_ulohy
https://vskp.vse.cz/60417_geneticky_algoritmus_jako_metoda_reseni_rozvrhovaci_ulohy

	Introduction
	Problem Description
	Graph
	Genetic Algorithm
	Representation
	Genetic Operators
	Selector
	Crossover
	Mutation

	Fixing the structure
	Fitness
	Reinsertion
	Elitism
	Summary

	Experiments
	Credits

