
Parallel Download Optimization
Jan Palášek

2020-11-15

Motivation

We want to download a file of size 𝑠. We can download it parallely in away, that we split the
file into many pieces and download those pieces separatelly at the same time. Unfortunately,
the conditions have changed and we can start a new downloading thread only after 𝑚 seconds.
We also have an internet with a limited speed 𝑣𝑙. What would be the 𝑛 ideal number of threads
to use? The second question is, given 𝑛number of threads, what would be the ideal length of
parts downloaded parts 𝑠1, ..., 𝑠𝑛?

Derivation

The main idea is that the downloading is fastest when the most threads possible are running
in parallel. Therefore our new method will calculate the threads sizes in a following way: -
We start a new thread as soon as possible (after 𝑚 seconds), - all threads stop running at the
same time

This is the optimum way, since there will be running as many threads as possible for as long
time as possible.

Denote 𝑡𝑖 as the time needed to download part 𝑠𝑖 with speed 𝑣. Therefore 𝑡𝑖 = 𝑠𝑖
𝑣 and

𝑠 = 𝑠1 + ... + 𝑠𝑛

𝑠 = 𝑣(𝑡1 + ... + 𝑡𝑛)

We have a limit for the speed: 𝑛 threads together must not have greater speed than 𝑣𝑙.

𝑛
∑

𝑖
𝑣 = 𝑛 ⋅ 𝑣 ≤ 𝑣𝑙 → 𝑛 ≤ 𝑣𝑙

𝑣

1

Since we start a new thread after 𝑚 seconds and stop all threads at the same time, then
𝑡𝑖 = 𝑡𝑖−1 − 𝑚. Expanding a few members of the recurrent sequence, we can observe that

𝑡𝑖 = 𝑡1 − 𝑚(𝑖 − 1)

We can calculate the total amount of time is the time until the last thread stops downloading.
The first thread is downloading for 𝑡1 seconds. the second for 𝑡2 and waits 𝑚 seconds before
downloading, therefore the total waiting for the second thread to finish up is 𝑡2 + 𝑚 seconds.
We can expand this up to 𝑛.

Thus the total amount of time of the download is

𝑡 = 𝑡1 = 𝑡2 + 𝑚 = ... = 𝑡𝑛 + 𝑚(𝑛 − 1)

The best way is to split it into as many pieces as possible while ∀𝑖 ∶ 𝑡𝑖 ≥ 0 holds. Since
𝑡𝑖 < 𝑡𝑖−1, then the constraint 𝑡𝑛 ≥ 0 is the most restricting one. This allows us to ignore the
other, less-restricting constraints.

𝑡𝑛 = 𝑡1 − 𝑚(𝑛 − 1) ≥ 0 → 𝑡1 ≥ 𝑚(𝑛 − 1)

𝑠 = 𝑣(𝑡1 + ... + 𝑡𝑛) = 𝑣
𝑛

∑
𝑖

𝑡𝑖

𝑠 = 𝑣
𝑛

∑
𝑖

(𝑡1 − 𝑚(𝑖 − 1))

𝑠 = 𝑣(𝑛 ⋅ 𝑡1 − 𝑚
𝑛

∑
𝑖

(𝑖 − 1))

𝑠 = 𝑣(𝑛 ⋅ 𝑡1 − 𝑚
2 𝑛(𝑛 − 1))

Using the inequality 𝑡1 ≥ 𝑚(𝑛 − 1), we can furthermore derive:

𝑠 ≥ 𝑣(𝑛 ⋅ 𝑚(𝑛 − 1) − 𝑚
2 𝑛(𝑛 − 1)) = 𝑣(𝑚

2 𝑛(𝑛 − 1))
2 ⋅ 𝑠
𝑚 ⋅ 𝑣 ≥ 𝑛(𝑛 − 1)

𝑛2 − 𝑛 − 2 ⋅ 𝑠
𝑚 ⋅ 𝑣 ≤ 0

𝑛1,2 =
1 ± √1 − 4 ⋅ (−1) ⋅ 2⋅𝑠

𝑚⋅𝑣
2 = 1 ± √1 + 8 𝑠

𝑚⋅𝑣
2 ≤ 0

2

There must also hold that 𝑛 ≤ 𝑣𝑙
𝑣 . We want to choose 𝑛 ∈ ℕ that has the biggest value. With

the previously stated bounds in mind, we can calculate the result number of threads as

𝑛 = floor(min (1 + √1 + 8 𝑠
𝑚⋅𝑣

2 , 𝑣𝑙
𝑣))

Let’s answer the second question: having 𝑛, what would be the ideal splits 𝑠1, ..., 𝑠𝑛. Using

𝑡1 = 𝑠
𝑣 ⋅ 𝑛 + 𝑚

2 (𝑛 − 1)

we can calculate 𝑠1 = 𝑣 ⋅ 𝑡1. Since we can calculate it any 𝑡𝑖 using

𝑡𝑖 = 𝑡1 − 𝑚(𝑖 − 1)

, we can calculate 𝑠𝑖 for all 𝑖.

Example

Suppose we want to calculate optimal number of threads and later corresponding splits for the
following parameters.

𝑠 = 30𝑀𝐵 = 30000𝑘𝐵
𝑣 = 100𝑘𝐵/𝑠

𝑣𝑙 = 20𝑀𝐵/𝑠 = 20000𝑘𝐵/𝑠
𝑚 = 60𝑠

What is the best 𝑛 to choose?

1 + √1 + 8 30000
60⋅100

2 = 3.7

20000
100 = 200

Therefore the final optimal number of threads to choose 𝑛 = 3.

Using this 𝑛 we can calculate size of the splits.

3

𝑡1 = 30000
100 ⋅ 3 + 60

2 (3 − 1) = 160𝑠

𝑠1 = 𝑣 ⋅ 𝑡1 = 100 ⋅ 160 = 16000𝑘𝐵 = 16𝑀𝐵

𝑡2 = 𝑡1 − 𝑚 = 160 − 60 = 100𝑠

𝑠2 = 𝑣 ⋅ 𝑡2 = 100 ⋅ 100 = 10000𝑘𝐵 = 10𝑀𝐵

𝑡3 = 𝑡2 − 𝑚 = 100 − 60 = 40𝑠

𝑠3 = 𝑣 ⋅ 𝑡3 = 100 ⋅ 40 = 4000𝑘𝐵 = 4𝑀𝐵

We can at last check, that 𝑠 = 𝑠1 + 𝑠2 + 𝑠3, which we can see that it indeed holds.

The best way to split the files is to let the first thread download 16 MB, the second 10 MB
and the last thread 4 MB for a total time of 160 s.

Comparison to a naive method

Let’s compare it to a naive method of splitting. The naive method splits the file into 𝑛 same
parts. Therefore

𝑠1 = ... = 𝑠𝑛 → 𝑡1 = ... = 𝑡𝑛

and the total length 𝑠 is

𝑠 =
𝑛

∑
𝑖

𝑠𝑖 = 𝑛 ⋅ 𝑠1

The total time spent by downloading 𝑡 is calculated as the time of the initial thread 𝑡1 + 𝑚
delay for starting every other thread.

𝑡naive = 𝑡naive
1 + 𝑚(𝑛 − 1)

𝑡naive can be calculated as

4

𝑡naive
1 = 𝑠1

𝑣 = 𝑠
𝑛 ⋅ 𝑣

and thus

𝑡naive = 𝑠
𝑛 ⋅ 𝑣 + 𝑚(𝑛 − 1)

Our method had

𝑡our = 𝑡our
1 = 𝑠

𝑛 ⋅ 𝑣 + 𝑚
2 (𝑛 − 1)

If we compare them, then

Δ𝑡 = 𝑡naive − 𝑡our = 𝑚
2 (𝑛 − 1)

So if we would start the downloading using both methods at the same time using the same
number of threads, then our method would end 𝑚

2 (𝑛 − 1) seconds before the naive method.

5

	Motivation
	Derivation
	Example
	Comparison to a naive method

